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Abstract

An upper bound for the reflection coefficient of any mode incident on a hole
of arbitrary shape in the infinitesimally thin wall of a perfectly conducting
multimode waveguide is given. The theoretical value is verified experimentally.

Introduction

The scattering of a waveguide mode from
a small hole in the infinitesimally thin wall
of a perfectly conducting multimode waveguide
has been calculated by many authors using
perturbation theory>.11 This perturbation
theory is valid for holes whose cross
sectional area is much less than A2 where A
is a free space wavelength. In order to
compute the scattering of a waveguide mode
from a hole whose cross-sectional area is
larger than A2 one must solve a difficult
boundary value problem. In this paper an
expression is derived for the upper bound to
the reflection coefficient of any mode
incident on a hole of arbitrary size and
shape in the infinitesimally thin wall of a
perfectly conducting multimode waveguide.
The expression for the upper bound is inde-
pendent of the complex amplitude of the
equivalent distribution of magnetic surface
current in the aperture of the hole and
depends OnlY on the relative amplitude distri-
bution of this current. Therefore, the upper
bound can be computed if the relative
distribution Of equivalent magnetic surface
current in ttie a aperture of the hole can
be estimated. In this paper the upper bound
is computed for the special case of TEO1

mode incident on a resonant circularly
symmetric circumferential gap in the infini-
tesimally thin wall of a perfectly conducting
circular waveguide. Using the solution to
the boundary value problem of a slot antenna
in a perfectly conducting infinitesimally
thin plane, the equivalent distribution of
magnetic surface current is estimated to be
a sine function of axial position that
vanishes at the ends of the EaD. The resonati
wavelength is assumed to be ;qual to the
period of the sine function. The calculated
result compared very well with the value
measured using a pulsed reflectometer test
set. This work was helpful in evaluating
a fault location scheme for a millimeter
waveguide transmission system under develop-
ment .

Theory

The upper bound of the reflection coef–
ficient R for the TX mode is computed as
follows: An expression for R is obtained
using the conservation of power principle
applied to a hole in a perfectly conducting
circular waveguide with an infinitesimally
thin wall excited by a single TX mode. Let

‘TX
be the power in the incident TX mode,

P(reflected) be the total power that is
reflected from the hole, P(transmitted) be the
total power that is transmitted past the hole,
and P(radiated) be the total power that is
radiated through the hole. Then the conserva-
tion of power can be expressed as

‘TX
= P(reflected) + P(transmitted)

+ P(radiated), (1)

‘et ‘TX
be the power reflected in the TX mode,

P2 be the power that is transmitted in the TX

mode past the hole, and l+t be the complex
voltage transmission coefficient of the TX
mode. The following equations are then valid

‘TX
R== (2)

‘TX

and

P2 =

where I I denotes the

l+t12PTx
(3)

magnitude. Let Pl be the

power transmitted in modes other than the TX
mode. Substituting Eq. (3) into Eq. (1) we
obtain

‘TX
= P(reflected) + P(radiated) + PI

+ lt12PTx + 2Re[t]PTx + pTX
(4)

where Re denotes the real part. The term

lt12pTx is the power scattered in the TX mode

in the forward direction, P’,

P’ = lt12PTx . (5)

The sum of the first four terms of Eq. (4) is
the total power scattered by the hole, P,

P = P(reflected) + P(radiated) + P, + P’.

Let ~ be the phase of the forward
mode with respect to the incident
Using Eq. (6) and Eq. (4) we have

1

(6)

scattered TX
TX mode.
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using Eqs. (7), (5), and (2) we obtain

(7)

4 COS2+P’P;X
R=

P2 “
(8)

The upper bound is given by Eq. (8) with
b=lT,

4P’P;X
R<—.

P2 L9 )

Equations (8) and (9) are valid for holes of
any size and shape and are dependent only on
the relative amplitude of the equivalent
distribution of,magne~ic surface current.
Equations for P

and ‘TX
can be obtained in

terms of R the equivalent distribution of
eq:

magnetic surface current, where

i?
eq.

=;XE, (lo)

~ is an outward unit normal to the waveguide
wall and ~ is the electric field in the
aperture of’ the hole. P is given as the sum
of the power radiated through the hole and
the power carried by all modes excited by
E

eq .“

The upper bound was calculated for a pure

TEO1 mode incident on a circularly symmetric

circumferential gap in a circular waveguide.
Let the axis of the waveguide lie on the z
axis of a cartesian coordinate system, A be
a complex amplitude, k be the propagation
constant of free sp~ce and n be an integer.
It is assumed that K is given by

eq”

(11)

The total power that is scattered inside the
waveguide is approximately equal to the total
power that is radiated through the hole if
the waveguide circumference is many free space
wavelengths long; this result was confirmed
numerically. Let a be the radius of the wave-
guide, J1 be a Bessel function of the first

kind of order one, UTE be the first nonzero
01

root of Jl, hTE be the propagation constant
01

of the incident TEol mode in the z direction.

Then the bound on R is given by

(12)

The value Of Eq. (12) in decibels is plotted
versus n in Fig. 2 at a wavelength of 5 mm.

Experiment

The theory presented was verified experi–
mentally using a pulse-reflectometer shown

as a block diagram in Fig. 3.12 The klystron
oscillator is modulated with a pulse whose
duration is typically 15 nanoseconds. The
pulse passes through the ci~culator, tuner,
transducer, taper, and then into the circular
waveguide of 50.8 mm inside diameter. The
reflected pulse passes back through the taper,
transducer, tuner and circulator and reaches
the detector through the precision attenuator
and wavemeter. The reflected pulse is
measured with respect to the reflected pulse
produced from a short circuit. The system
sensitivity using this setup is about -55 db.
The experimental data was obtained by
R. G. Fellers and is plotted in Fig. 2. The
agreement between the theoretical and experi-
mental results is good.
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FIG 1

Geometry of Waveguide with Holes
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‘Eel Reflection Coefficient

versus Gap Length
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